China manufacturer CHINAMFG Customized Speed Fluid Coupling, Fluid Coupling Hydraulic, Flexible Fluid Coupling

Product Description

Densen customized fluid coupling,constant fluid coupling,fluid coupling yox

 

Product Name Fluid coupling,constant fluid coupling,fluid coupling yox
DN mm 16~190mm
Rated Torque 40~25000 N·m
Allowable speed 4500~200 kN·m
Material 45#steel
Application Widely used in metallurgy, mining, engineering and other fields.

 

Product show

Company Information

Equipment

 

Application Case

Typical case of diaphragm coupling applied to variable frequency speed control equipment

JMB type coupling is applied to HangZhou Oilfield Thermal Power Plant

According to the requirements of HangZhou Electric Power Corporation, HangZhou Oilfield Thermal Power Plant should dynamically adjust the power generation according to the load of the power grid and market demand, and carry out the transformation of the frequency converter and the suction fan. The motor was originally a 1600KW, 730RPM non-frequency variable speed motor matched by HangZhou Motor Factory. The speed control mode after changing the frequency is manual control. Press the button speed to increase 10RPM or drop 10RPM. The coupling is still the original elastic decoupling coupling, and the elastic de-coupling coupling after frequency conversion is frequently damaged, which directly affects the normal power generation.

It is found through analysis that in the process of frequency conversion speed regulation, the pin of the coupling can not bear the inertia of the speed regulation process (the diameter of the fan impeller is 3.3 meters) and is cut off, which has great damage to the motor and the fan.

Later, they switched to the JMB460 double-diaphragm wheel-type coupling of our factory (patent number: ZL.99246247.9). After 1 hour of destructive experiment and more than 1 year of operation test, the equipment is running very well, and there is no Replace the diaphragm. 12 units have been rebuilt and the operation is in good condition.

 

Other Application Case

 

Spare parts

 

Packaging & Shipping

 

Contact us

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Factors to Consider when Choosing between a Fluid Coupling and a VFD (Variable Frequency Drive)

When selecting between a fluid coupling and a VFD for a power transmission application, several factors should be taken into account:

  • Speed Control Requirements: Consider whether variable speed control is essential for your application. VFDs are excellent for applications that require precise and flexible speed control, while fluid couplings typically offer limited speed control capabilities.
  • Energy Efficiency: Evaluate the energy efficiency requirements of your system. VFDs can offer higher energy efficiency by allowing the motor to run at optimal speeds, whereas fluid couplings introduce some energy losses due to slip.
  • Starting Torque: Examine the starting torque requirements of the driven load. Fluid couplings can provide high starting torque and smooth acceleration, which may be advantageous for applications with high inertia loads.
  • Overload Protection: Consider the need for overload protection. Fluid couplings inherently provide some protection against shock loads by allowing slip, while VFDs may require additional protective mechanisms.
  • Maintenance and Service: Evaluate the maintenance and service requirements of both systems. Fluid couplings are generally simpler and require less maintenance compared to VFDs, which involve electronic components.
  • Cost: Compare the initial and long-term costs of both options. VFDs often have higher upfront costs but can provide significant energy savings in the long run, while fluid couplings may have lower initial costs but could lead to higher energy consumption.

Ultimately, the choice between a fluid coupling and a VFD depends on the specific needs of your application. Each option has its advantages and limitations, and a thorough analysis of the operating conditions and performance requirements will help determine the most suitable solution for your system.

fluid coupling

Role of Fluid Coupling in Torque Multiplication and Power Transfer

A fluid coupling is a mechanical device used to transmit power between two shafts without direct physical contact. It operates on the principles of fluid dynamics and hydrokinetics to enable torque multiplication and efficient power transfer. Here’s how a fluid coupling achieves these functions:

  • Hydrodynamic Torque Converter: A fluid coupling is essentially a hydrodynamic torque converter. When the input shaft (driving shaft) rotates, it sets the transmission fluid inside the coupling in motion. The fluid experiences centrifugal forces, creating a high-velocity zone near the outer circumference and a low-velocity zone near the center. This velocity difference generates torque in the fluid coupling, allowing power to be transmitted from the input shaft to the output shaft (driven shaft).
  • Torque Multiplication: One of the primary advantages of a fluid coupling is its ability to provide torque multiplication. During startup or when the load on the driven shaft is initially low, the fluid coupling slips to some extent, which allows the input shaft to rotate at a higher speed than the output shaft. This speed difference results in torque multiplication, enabling the fluid coupling to handle higher loads during acceleration or heavy starting conditions.
  • Power Transfer Efficiency: Fluid couplings offer high power transfer efficiency due to the hydrodynamic nature of their operation. The smooth and continuous transmission of power through the fluid medium minimizes energy losses and mechanical wear, leading to more efficient power transmission compared to mechanical clutches or direct-coupling methods.
  • Load Adaptability: Fluid couplings automatically adjust their slip to adapt to changing load conditions. When the load on the output shaft increases, the fluid coupling slips more, allowing the output shaft to slow down slightly and match the load demand. This load adaptability ensures smooth and stable power transfer even under varying operating conditions.

Fluid couplings are commonly used in applications where torque multiplication and smooth power transfer are essential. They find widespread use in heavy machinery, mining equipment, conveyors, crushers, marine propulsion systems, and many other industrial applications. By efficiently transferring power while providing torque multiplication, fluid couplings help optimize the performance and longevity of power transmission systems.

Proper selection of the fluid coupling based on the application’s torque and power requirements is crucial to ensure optimal torque multiplication and power transfer. Additionally, regular maintenance and monitoring of the fluid coupling’s condition are essential to maintain its efficiency and reliability over time.

fluid coupling

Types of Fluid Used in Fluid Couplings

Various types of fluids can be used in fluid couplings depending on the specific application and requirements. Some common types of fluids used in fluid couplings include:

  • Oil: Mineral oil is one of the most commonly used fluids in fluid couplings. It offers good lubrication properties and thermal stability, making it suitable for a wide range of operating conditions. Oil-based fluids are generally cost-effective and readily available.
  • Water-Glycol: Water-glycol mixtures are often used in fluid couplings that require fire-resistant properties. These mixtures provide improved cooling and are less flammable compared to pure oil fluids. They are commonly used in applications where fire safety is a concern, such as in mining and underground operations.
  • Synthetic Fluids: Synthetic fluids, such as synthetic oils and silicone-based fluids, offer enhanced performance characteristics over mineral oils. They can withstand higher temperatures and provide better thermal stability, making them suitable for more demanding industrial applications.
  • Biodegradable Fluids: In environmentally sensitive applications, biodegradable fluids are used to reduce the environmental impact in case of accidental leaks or spills. These fluids are designed to break down naturally and are commonly used in applications like forestry and marine operations.

The choice of fluid depends on factors such as the required power transmission efficiency, operating temperature, fire safety requirements, and environmental considerations. It is essential to select the appropriate fluid that matches the specific needs of the fluid coupling and the machinery or equipment it is used in.

China manufacturer CHINAMFG Customized Speed Fluid Coupling, Fluid Coupling Hydraulic, Flexible Fluid Coupling  China manufacturer CHINAMFG Customized Speed Fluid Coupling, Fluid Coupling Hydraulic, Flexible Fluid Coupling
editor by CX 2024-04-11


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *