China wholesaler Pneumatic Accessories Chs Ss Engineered Fluid Transfer Couplings

Product Description

Pneumatic Accessories CHS SS Engineered Fluid Transfer Couplings
 

Type C – Spiral  camlock with male adapter  X Spiral hose shank

Type E – Spiral camlock are produced according to A-A-59236( Mil-C-2787) , Spirsl hose shank For Composite Hose Coupling, Spiral Camlock fittings provides a simple and reliable way to connect and disconnect hoses, which is more efficient and economical than threaded or flanged joints. Camlock fittings is suitable for transporting heavy oil, kerosene, water, hydraulic oil, oil and fuel, or acid and alkaline chemicals, with the advantages of quick connection and flexible disassembly.

  • Name  Type C – Spiral camlock with male adapter  X Spiral hose shank
    Body Material:  Aluminum/ Stainless steel
    Size: From 3/4” to 4”
    MOQ: 50 PCS
    Certificates:  CE, ISO9001:2015
    Application: Water lines and irrigation in industry, construction agriculture and horticulture.
    Connection:  Male thread
    Arm Material:  Stainless steel and brass
    Working pressure: 50-250 CHINAMFG (It depends on the size and temperature)
    Manufacture method:  Gravity casting/ Precision casting
    Thread:  BSP, BSPT, NPT, G(ISO228.1), and R(DIN2999).

Camlock fittings Feature:

  • Light, flexible and interchangeable
  • To connect and disconnect without tool
  • Economical

The application of camlock fitting in variety industries.

  • Industry: Oil, mine, municipal, construction, chemical and agriculture.
  • Application: hydraulic oil, coolant, gasoline and petroleum products, fuel delivery,  wastewater, chemical transportation and storage etc.

 

Our Advantage

We are experienced as we have been in this industry as a manufacturer for more than 10 years. Both quality and service are highly guaranteed. Absolutely prompt delivery. We can produce according to specific drawings from customers. Welcome OEM/ODM project. Strict control on quality. High efficient and well-trained sales service team.  ISO9001, CE, and SGS certified.

FAQ

1. Q: Are you a producer or trading company?
    A: We are an experienced manufacturer. We own a production line and kinds of machines.  

2. Q: Can you make our specific logo on the part?
    A: Yes please provide me your logo and we will make your logo on the part.

3. Q: Can you manufacture products according to my drawings?
   A: Yes we can manufacture according to the client’s drawings if drawings or samples are available. We are experienced               enough to make new tools.

4. Q: Can I get some samples?
    A: We are honored to offer you our samples. Normally it is for free like 3-5 pcs. It is charged if the samples are more than 5        pcs. Clients bear the freight cost.

5. Q: How many days do you need to finish an order?
    A: Normally it takes about 30 days to finish the order. It takes more time around CHINAMFG season, or if the order involves many        kinds of different products.  

6. Q: What kind of rubber washer do you apply to Camlock couplings?
     A: Normally we use an NBR gasket.

contact-info.html /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Fluid Couplings in Marine Propulsion Systems

Yes, fluid couplings can be and are commonly used in marine propulsion systems. They offer several advantages that make them well-suited for such applications:

  • Smooth Power Transmission: Fluid couplings provide smooth power transmission, which is beneficial for marine propulsion where abrupt changes in power delivery can be detrimental to the vessel’s stability and performance.
  • Torque Limiting: In marine applications, fluid couplings can act as torque limiters, protecting the propulsion system and engine from sudden torque surges and overloads, which can occur during maneuvers or when encountering resistance in water.
  • Impact Damping: The hydrodynamic principle of fluid couplings helps dampen impacts and shocks in the propulsion system, reducing wear and tear on the components and extending their lifespan.
  • Load Sharing: In multi-engine marine setups, fluid couplings facilitate load sharing between engines, ensuring each engine contributes its share of power to achieve optimal propulsion efficiency.
  • Start-up Performance: Fluid couplings enable controlled and gradual acceleration during start-up, which is crucial for large vessels and applications where sudden torque spikes could damage the drivetrain or disturb the vessel’s balance.
  • Overload Protection: The fluid coupling’s ability to slip at high loads provides inherent overload protection to the marine propulsion system, safeguarding it against potential damage.

Fluid couplings used in marine applications are specially designed to withstand the harsh conditions of the marine environment, including exposure to saltwater, humidity, and vibration. They are available in various sizes and configurations to accommodate different marine vessel types and power requirements.

Overall, fluid couplings offer reliable and efficient power transmission solutions for marine propulsion systems, contributing to the safe and smooth operation of the vessel.

fluid coupling

Cost Implications of Using Fluid Couplings in Comparison to Other Power Transmission Methods

The cost implications of using fluid couplings in power transmission depend on various factors, including the application requirements, the size of the system, and the operational conditions. While fluid couplings offer several advantages, they may have different cost considerations compared to other power transmission methods like mechanical clutches, VFDs (Variable Frequency Drives), and direct mechanical drives.

1. Initial Investment:

The initial cost of a fluid coupling can be higher than that of a mechanical clutch or a direct mechanical drive. Fluid couplings contain precision components, including the impeller and turbine, which can impact their initial purchase price.

2. Maintenance Costs:

Fluid couplings are generally considered to have lower maintenance costs compared to mechanical clutches. Mechanical clutches have wear and tear components that may require more frequent replacements, leading to higher maintenance expenses over time.

3. Energy Efficiency:

Fluid couplings are highly efficient in power transmission, especially during soft-start applications. Their ability to reduce shock loads and provide a smooth acceleration can result in energy savings and operational cost reductions.

4. Space and Weight:

Fluid couplings are usually more compact and lighter than some mechanical clutches, which can be advantageous in applications with space constraints or weight limitations.

5. Specific Application Considerations:

The suitability and cost-effectiveness of fluid couplings versus other power transmission methods can vary based on specific application requirements. For example, in soft-start applications, fluid couplings may be the preferred choice due to their ability to reduce mechanical stress and protect connected equipment.

6. Lifespan and Reliability:

While the initial cost of a fluid coupling might be higher, their longevity and reliability can lead to lower overall life cycle costs compared to other power transmission methods.

In conclusion, the cost implications of using fluid couplings in power transmission depend on the particular application and the total cost of ownership over the equipment’s lifespan. Although fluid couplings may have a higher initial investment, their long-term reliability, energy efficiency, and lower maintenance costs can make them a cost-effective choice in many industrial applications.

fluid coupling

Examples of Industries Using Fluid Couplings

Fluid couplings find applications in various industries where smooth power transmission and torque control are required. Some common industries that commonly use fluid couplings include:

  • Mining: Fluid couplings are used in mining equipment such as conveyors, crushers, and excavators to provide controlled startup and overload protection.
  • Construction: Construction machinery like cranes, loaders, and piling rigs use fluid couplings for efficient power transmission and reduced shock loads.
  • Marine: Fluid couplings are employed in marine propulsion systems to optimize engine performance and protect against sudden load changes.
  • Steel and Metal Processing: Industries dealing with metal processing use fluid couplings in rolling mills, coilers, and metal forming machines for soft start and overload protection.
  • Pulp and Paper: Pulp and paper mills utilize fluid couplings in various equipment, such as chippers, conveyors, and pumps, for smooth power transmission.
  • Automotive: In automotive applications, fluid couplings can be found in torque converters, which provide smooth torque transmission in automatic transmissions.
  • Energy and Power Generation: Fluid couplings are used in power plants for applications like fans, pumps, and turbines to control power transmission and reduce mechanical stress during startup.
  • Wastewater Treatment: Fluid couplings are used in wastewater treatment plants for applications like aerators and pumps, ensuring efficient power transmission and equipment protection.
  • Food and Beverage: Industries dealing with food processing and beverage production use fluid couplings in various applications to ensure gentle power transmission and prevent sudden load shocks.
  • Chemical and Petrochemical: Fluid couplings are used in pumps and mixers in chemical and petrochemical processing to control torque and protect equipment.

These examples illustrate the versatility of fluid couplings and their widespread use across diverse industries to enhance the efficiency and safety of power transmission systems.

China wholesaler Pneumatic Accessories Chs Ss Engineered Fluid Transfer Couplings  China wholesaler Pneumatic Accessories Chs Ss Engineered Fluid Transfer Couplings
editor by CX 2024-04-04


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *